Improving the Recognition of Handwritten Characters using Neural Networkthrough Multiresolution Technique and Euclidean Distance Metric
نویسندگان
چکیده
Good recognition accuracy can be achieved through a combination of multiple classifiers rather than a single classifier. The present paper deals with the handwritten English character recognition using multiresolution technique with Discrete Wavelet Transform (DWT) and Euclidean Distance Metric (EDM). Recognition accuracy is improved by learning rule through the Artificial Neural Network (ANN) along with Euclidean distances in case of misclassification. Handwritten characters are classified into 26 pattern classes based on appropriate property i. e. shape. Features of the handwritten character images are extracted by DWT used with appropriate level of multiresolution technique and then each pattern class is characterized by a mean vector. Distances from unknown input pattern vector to all the mean vectors are computed by EDM. Minimum distance determines the class membership of input pattern vector. EDM provides a good recognition accuracy of 90. 77%. In case of misclassification, the learning rule through ANN improves the recognition accuracy to 95. 38% by comparing the generated recognition scores and then product of recognition scores with Euclidean distances further improves the recognition accuracy to 98. 46%. Weight matrix of the misclassifiedclass is computed using the learning rule of ANN, then the misclassifiedinput pattern vector is fused with
منابع مشابه
Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملHandwritten Character Classification using the Hotspot Feature Extraction Technique
Feature extraction techniques can be important in character recognition, because they can enhance the efficacy of recognition in comparison to featureless or pixel-based approaches. This study aims to investigate the novel feature extraction technique called the hotspot technique in order to use it for representing handwritten characters and digits. In the hotspot technique, the distance values...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013